EXPERIMENT 3 Series Circuits &Voltage Measurements, DMM as DVM

3-1 OBJECTIVES:

After finishing this experiment, you will be able to:

- Construct a series circuit using MultiSim simulation tool.
- Get familiar with the MultiSim components.
- Get familiar with MultiSim DMMs.

3-2 Voltage Reference and Potential Difference:

All voltage measurements are either measured from a certain point with respect to a reference point (mostly called the ground reference) or the voltage difference between any two points in a circuit which is normally the voltage across a component in the circuit such as the voltage across a resistor, capacitor, Inductor, diode, transistor etc.... Whether it is in reference to ground or across a circuit component, the voltage between any two points is called the potential difference between those two points.

The above explanation is illustrated in the following circuit example:

Notice that regardless of where the reference point is, the potential differences between any two points remains the same and they are given by:

VAB = VA - VB.VBC = VB - VC.VAC = VA - VC.

See below for simulation results.

A V Ω dB

 \sim –

Set...

+

VC

Ō

Multimeter-XMM1

 \times

Va-b = Va - Vb = 15V - 10V = 5V

- Vb-c = Vb Vc = 10V 0V = 10V
- Va-c = Va Vc = 15V 0V = 15V

Figure 3-1

Figure 3-2

3-3 DISCUSSION:

The following is a series resistive circuit. To find the total current and the individual voltages across R1 & R2, either the traditional ohm's law or the voltage division formula can be used.

Using Ohm's law:

The total resistance seen by the voltage source is RT = R1 + R2.

The total current is IT = VT / RT.

VR1 = IT \times R1.

 $VR2 = IT \times R2.$

Using the voltage division formula:

 $V_{Rx} = (VT \times Rx) / RT.$ $VR1 = (VT \times R1) / RT.$

 $VR2 = (VT \times R2) / RT.$

To find the voltage drop (potential difference) across two points x & y, use the following formula:

Vx-y = Vx - Vy

where:

Vx is the voltage between point x and a reference point. Vy is the voltage between point y and the same reference point

3-4 <u>CALCULATIONS:</u>

For the following circuit, using the two methods explained above (Traditional ohm's law and the voltage division formula) to fill table 3-1. **Show all work including the formulas.**

Figure 3-3

VS	RT	IT	VR1 Using	VR2 Using	VR1 Using	VR2 Using
	Calculated	Calculated	Ohm's	Ohm's	the	the
			Law	Law	Voltage	Voltage
			Calculated	Calculated	Division	Division
					Formula	Formula
					Calculated	Calculated

Table 3-1

3-5 **PROCEDURE:**

Using MultiSim, connect the circuit in Figure 3-3 like the circuit shown in Figure 3-1 (reference point is point C). You will need to place the following components.

Step 1:

To place the voltage source, do the following:

- 1- From the menu, Press on the Place->Component.
- 2- From the group submenu, choose Sources-> POWR_SOURCES->DC_POWER.
- 3- Hit OK.

Select a Component		_	
Database:	Component:	Symbol (ANSI Y32.2)	ОК
Master Database 🗸 🗸	DC_POWER Tr		Close
Group:	AC_POWER		Creat
🛨 Sources 🗸 🗸	DC_POWER		Search
Family:	DGND	¥	Detail report
All <all families=""></all>	GROUND		View model
POWER_SOURCES	GROUND_REF1	<u> </u>	
G SIGNAL_VOLTAGE_SOURCES		x	
SIGNAL_CURRENT_SOURCES	GROUND_REF4		
CONTROLLED_VOLTAGE_SOUR	GROUND_REF5		
	NON_IDEAL_BATTERY		Help
	THREE_PHASE_DELTA		
DIGITAL_SOURCES	THREE_PHASE_WYE	Function:	
	V_REF1	DC voltage source.	~
	V_REF2		
	V_REF3		
	V REE5		
	VCC	Model manufacturer/ID:	
	VDD	Generic / VDCP	
	VEE		
	VSS		
		Package manufacturer/type:	
		Hyperlink:	
< >			
Components: 21	Searching:		Filter: off .:

Step 2: <u>To Place the resistors, do the following:</u>

- 1- From the menu, Press on the Place->Component.
- 2- From the group submenu, choose Basic-> RESISTOR.
- 3- Choose the resistors one at a time and hit OK.

Step 3:

To Place the Multimeters, do the following:

1- On the right-hand side of the Multisim screen there is a vertical menu of devices. Click on the Multimeter as shown. Make sure that the Multimeter choices are as follows.

Repeat until you get 3 Multimeters.

<u>Step 4:</u>

Connect the elements to each other by placing the mouse on a device terminal, pressing it, and then dragging it to the element that you want connected, then pressing again.

<u>Step 5:</u>

Once you are done connecting all the elements together including the Multimeter, run the simulation by pressing the green play button from the main menu as shown below.

<u>Step 6:</u>

Double press on all the Multimeters one at a time to display the value of the voltages Va, Vb and Vc. Place those values in Table 3-2 below and then calculate the values of Va-b, Vb-c and Va-c.

Voltage to Reference		Voltage Drop or Potential Difference		
Va =		Va-b = Va - Vb		
Vb =		Vb-c = Vb - Vc		
Vc =		Va-c = Va - Vc		

Step7:

Replace the reference point and the Multimeter leads to comply with the circuit as in Figure 3-2 (reference point is point B) and then fill the value in Table 3-3 below.

Voltage to Reference	Voltage Drop or Potential Difference	
Va =	Va-b = Va - Vb	
Vb =	Vb-c = Vb - Vc	
Vc =	Va-c = Va - Vc	

Table 3-3

3-6 **SUMMARY:**

It does not matter where the reference point is placed in the circuit, the voltage drops across the elements will be the same.

This concludes the experiment.